Introduction to Python for Data Analysis: Wellington, 14–15 March 2019

Loading Events

« All Events

Introduction to Python for Data Analysis: Wellington, 14–15 March 2019

14 March 2019 @ 9:30 am - 15 March 2019 @ 9:30 am

Secure your place today

Tickets

30 available
Introduction to Python for Data Analysis: Wellington, 14–15 March 2019A$2,600.00 A$2,400.00

Python is a high level and general purpose programming language. Millions of Python users contribute to a thriving open-source community that also enjoys immense commercial use and support.

A core set of packages and interfaces (Jupyter Notebooks, Pandas, Numpy, scikit-learn) presents analysts and data scientists with an interactive and powerful tool to perform data mining, statistical analysis and visualisation.

Data-science teams usually use at least one of Python and R in their production environments or analysis pipelines. Python is also the tool of choice of elite data-mining competition winners and deep-learning innovations such as Tensorflow.

See what former trainees are saying about this course.

Earlybird pricing is available until 28 February 2019.

Group discounts also apply during the earlybird period: 5% for 2–4 people, 10% for 5–6 people, 15% for 7–8 people, and 20% for 9 or more people. Select your desired quantity of tickets and click “Add to cart” to see the discount calculated before checkout.

Please contact us at enquiries@presciient.com to find out more about these special rates.


Course outline

This two-day course is an introduction to Python programming and Jupyter Notebooks, beginning with the most basic operations of downloading and installing the Python environment. The course will use Anaconda, a popular Python distribution for data science that includes many of the packages used in this course.

The course will also introduce core Python objects and operations, Numpy for statistical and matrix operations, matplotlib and Plotly for visualisations, and Pandas, a comprehensive data manipulation and analysis package.

Participants will learn how to input, read, write, and manipulate data, primarily using Pandas, and be instructed in all the aspects of procedural programming in Python, allowing them to create their own Python modules.

Jupyter Notebooks will be featured as the recommended interface to write code, explore and analyse data, and to document and communicate the results of the data analysis with interactive visualisations.

The course is focused on providing a foundation for participants to use Python for exploratory data analysis and visualisation, which can be used as a stepping stone to machine learning using the popular scikit-learn package and deep-learning packages unique to Python. Familiarity with Python will allow users to use packages and access data and web services that have existing connections to Python, e.g. natural language processing, APIs, and web scraping.

Who should attend?

This is a practical course, suitable for existing and prospective data-analysis practitioners in government and industry. Participants will be provided with a range of programmatic and user-interface options for working with data in Python. The course assumes no specialised statistical knowledge. Its focus is developing a practical understanding of Python as a tool for business users.

Course Outcomes

By the end of the course attendees will have the basic skills, resources and guidance to immediately and confidently begin using Python in their work.


Testimonials

Having studied stats at Uni I was surprised how far the field has progressed in the last few years, particularly in the area of big data. The great thing about Eugene’s course is I left with a sense that I was up to date with the latest big data modelling concepts but more importantly could also deploy them with some confidence. Eugene also made it clear he was available to answer questions after the course, so you are not left hanging.
—Damon Rasheed, CEO, Rate Detective

Data science can be a challenging topic but Eugene’s “Introduction to Machine Learning” course turns complex statistical models into plain English. The course contents and presentation were accessible and I enjoyed the mixture of hands-on rattle() exercises, the challenge of building multiple models with real life data, and the salient theory whiteboard discussions created many “aha” moments.

It was a great introductory course and it gave me with a better grasp of Machine Learning in general, a great framework for thinking about it and practical hands-on skills that I can put to immediate use. I wish I had done this course sooner.
—Charl Swart, Director of Business Operations, Unisys Credit Services


Course instructor

Courses are taught by Dr Eugene Dubossarsky and his hand-picked team of highly skilled instructors.


About our training

Eugene Dubossarsky’s courses are unlike those offered in universities, online, or by private providers. His data-science classes, in particular, give clients not just knowledge of a process, but the real power of understanding the underlying concepts, allowing them to confidently practice, manage, promote and risk-assess data science.

Dr Dubossarsky says “the way many courses teach data science is like teaching people to memorise and recite poetry in a language they do not understand”. By contrast, he confers an understanding of that language, taught in an intuitive, accessible way that leaves trainees with an instinct for data science. Keeping formulae and mathematics to a bare minimum and taking an intuitive, visual approach, Eugene’s courses deliver a compressed mentoring experience as much as they do content. This is difficult for an average trainer to replicate. Trainees benefit from his extensive knowledge and over 20 years of commercial data-science experience, as well as his unique teaching style.

The resulting testimonials speak for themselves, and candidates come from all walks of life: CEOs, general managers, salespeople, IT professionals, marketing staff, public servants and of course people from many functions in the finance world. These testimonials are extensive, and many more are available on request. With specific regard to finance, Eugene has mentored and advised senior leaders and their teams in a number of major Australian banks.


Questions and further details

Prerequisites

The course assumes no tertiary level training in statistics. Attendees simply need to be familiar with working with structured, electronic data.

Platform

The course will make use of the Anaconda Distribution of Python and some of the training may be demonstrated using Microsoft Azure Notebooks or on the Microsoft Data Science Virtual Machine.

Meals and refreshments

Catered morning tea and lunch are provided on both days of the course. Please notify us at least a week ahead if you have any special dietary requirements.

Feedback

Use enquiries@presciient.com to email us any questions about the course, including requests for more detail, or for specific content you would like to see covered, or queries regarding prerequisites and suitability.

If you would like to attend but for any reason cannot, please also let us know.

Variation

Course material may vary from advertised due to demands and learning pace of attendees. Additional material may be presented, along with or in place of advertised.

Cancellations and refunds

You can get a full refund if you cancel 2 weeks or more before the course starts. No refunds will be issued for cancellations made less than 2 weeks before the course starts.

Frequently asked questions (FAQ)

Do I need to bring my own computer?

There’s no need to bring your own laptop or PC. Our courses take place in modern, professional training facilities that have all the computing equipment you’ll need.

I'm lost! How do I find the venue?

Please call 0800-424282 or email training@presciient.com if you can’t find the venue.

Presciient training, coaching, mentoring and capability development for analytics

Please ask about tailored, in-house training courses, coaching analytics teams, executive mentoring and strategic advice and other services to build your organisation's strategic and operational analytics capability.

Our courses include:

  • Predictive Analytics, Machine Learning, Data Science and AI
  • Data Literacy for Everyone
  • Introduction to R and Data Visualisation
  • Introduction to Python for Data Analysis
  • Forecasting and Trend Analytics
  • Advanced Machine Learning Masterclass
  • Advanced Masterclass 2: Random Forests
  • Advanced R
  • Quantum Computing
  • Text and Language Analytics
  • Fraud and Anomaly Detection
  • Introduction to Machine Learning
  • Introduction to Data Science
  • Kaggle Boot Camp

By booking this course, you agree to our terms and conditions.

For any enquiries, please call 0800-424282.

If you prefer, you can pay by invoice rather than credit card. Just select “Pay by invoice” at the checkout.

Details

Start:
14 March 2019 @ 9:30 am
End:
15 March 2019 @ 9:30 am
Event Category:

Organizer

Presciient
Website:
https://presciient.com

Venue

Auldhouse, Wellington
11 Hunter St, Wellington, 6011, New Zealand
Wellington, Wellington 6011 New Zealand
+ Google Map
Phone:
+64 4-473 2314
Website:
https://auldhouse.co.nz/

Tickets

30 available
Introduction to Python for Data Analysis: Wellington, 14–15 March 2019A$2,600.00 A$2,400.00